Deux nombres naturels ont toujours des diviseurs communs. Par exemple, les diviseurs communs 12 et 18 sont 1, 2, 3 et 6. Parmi ceux-ci, 6 est le plus grand. Nous appelons donc le 6 de diviseur commun maximum de 12 et 18 et nous indiquons m.d.c. (12.18) = 6.
Le plus grand diviseur commun de deux nombres ou plus est appelé diviseur commun maximum de ces chiffres. Nous utilisons l'abréviation m.d.c.Quelques exemples:
mdc (6.12) = 6
mdc (12.20) = 4
mdc (20.24) = 4
mdc (12.20.24) = 4
mdc (6.12.15) = 3
Calcul de M.D.C.
Une façon de calculer m.d.c. de deux nombres ou plus consiste à utiliser la décomposition de ces nombres en facteurs premiers.
1) nous décomposons les nombres en facteurs premiers;
2) le m.d.c. est le produit de facteurs premiers communs.
Suivez le calcul de m.d.c. entre 36 et 90:
36 = 2x 2 x 3 x 3
90 = 2 x 3 x 3 x 5
Le m.d.c. est le produit de facteurs premiers communs => m.d.c. (36,90) = 2x3x3
Par conséquent m.d.c. (36,90) = 18.
Écrivant la factorisation du nombre sous forme de puissance que nous avons:
36 = 22 x 32
90 = 2 x 32 x5
Donc m.d.c. (36,90) = 2 x 32 = 18.
Calcul de M.D.C. par le processus de divisions successives
Dans ce processus, nous faisons plusieurs divisions jusqu'à atteindre une division exacte. Le diviseur de cette division est m.d.c. Suivez le calcul de m.d.c. (48,30).
Règle pratique:
1º) nous divisons le plus grand nombre par le plus petit;
48 / 30 = 1 (avec le reste 18)
2º) on divise le diviseur 30, qui est le diviseur de la division précédente, par 18, qui est le reste de la division précédente, et ainsi de suite;
30 / 18 = 1 (avec le reste 12)
18 / 12 = 1 (avec le reste 6)
12 / 6 = 2 (avec zéro restant - division exacte)
3º) Le diviseur de division exacte c'est 6. Donc m.d.c. (48,30) = 6.
Des nombres premiers entre eux
Deux ou plusieurs numéros sont cousins entre eux quand le maximumle diviseur commun de ces nombres est 1.
Exemples:
Les chiffres 35 et 24 sont nombres premiers les uns aux autres, puisque mdc (35,24) = 1.
Les chiffres 35 et 21 ne sont pas nombres premiers les uns aux autres, puisque mdc (35,21) = 7.
Propriété de M.D.C.
Parmi les nombres 6, 18 et 30, le nombre 6 est un diviseur des deux autres. Dans ce cas, 6 est m.d.c. (6,18,30). Remarque:
6 = 2x3
18 = 2x32
30 = 2x3x5
Donc m.d.c. (6.18,30) = 6